O.P.Code: 18CE0116

R18

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations June-2024GEOTECHNICAL ENGINEERING

(Civil Engineering)

		(Civil Engineering)			
Tim	ıe:	3 Hours	Max.	Mark	s: 60
		<u>PART-A</u>			
		(Answer all the Questions $5 \times 2 = 10$ Marks)			
1	a	State Darcy's law.	CO ₁	L2	2M
	b	Define relative compaction.	CO ₂	L1	2M
	c	List out various assumptions of Boussinesq's equation.	CO ₃	L1	2M
	d	Mention various uses of Taylor's stability number.	CO ₄	L1	2M
	e	What are hand carved samplers?	CO5	L1	2M
		PART-B	COS	LI	2111
		(Answer all Five Units 5 x $10 = 50$ Marks)			
_		UNIT-I			50
2	a	Using three phase diagram of soil, develop an expression for Void ratio,	CO ₁	L1	5M
		water content, specific gravity and degree of saturation.			
	b	The moist unit weight of soil sample is 19.2 kN/m ³ and has water content	CO1	L2	5M
		of 9.8%. The specific gravity of soil particles is 2.69. Determine dry unit			
		weight, void ratio and porosity and degree of saturation.			
		OR			
3	a	What are consistency limits explain with graph.	CO1	L1	5M
		Explain in detail the laboratory method of liquid limit.	CO ₁	L2	5M
		UNIT-II			
4			CO1	т 2	EN 1
4	а	The Maximum dry density of a sample by the light compaction test is	CO ₂	L3	5M
		1.78g/ml at an optimum water content of 15%. Find the air voids and			
		degree of saturation G=2.67. What would be the corresponding value of			
		dry density on the zero air voids at optimum moisture conten.	~~		
	b	An earth embankment is compacted at a water content 18% to a bulk	CO ₂	L3	5M
		density of 19.2 kN/m ³ . If the specific gravity of the sand is 2.7 find the			12
		void ratio and the degree of saturation of compacted embankment.			
		OR			
5		In a consolidation test the following results have been obtained. When the	CO ₂	L3	10M
		load was changed from 50 kN/m2 to 100 kN/m2, the void ratio changed			
		from 0.70 to 0.65. Determine compression index, coefficient of volume			
		change and coefficient of consolidation in mm ² /sec.			
		UNIT-III			
6	a	A concentrated load of 2000 kN acts vertically at the ground surface.	CO ₃	L3	5M
		Determine the vertical stress at a point P which is 6m directly below the			
		load. Also calculate the vertical stress at a point R which is at a depth of			
		6m but at a horizontal distance of 5m from the axis of the load.			
	h	Determine the vertical stress at a point P which is 3m below and at a	CO ₃	1.3	5M
	~	radial distance of 3m from the vertical load 100kN. Use westergaard's	003	LS	JIVI
		solution.			
		OR			
7	9	Explain the concept of 'Westergaards theory' in soils.	CO3	12	6M.
, ,				L2	
	IJ	What do you understand by 'Pressure bulb'? Illustrate with sketches.	CO ₃	L1	4M
0		UNIT-IV			
8		What are the factors causes the slope failures?	CO4	L1	4M
	b	Explain different types of slope failures with neat sketches	CO ₄	L2	6 M

		OR			
9		Give the step by step procedure of analyzing stability of a finite slope	CO4	L2	10M
		using Swedish circle method.			
		UNIT-V			
10	a	What are the different stages in sub soil exploration?	CO ₅	L1	5M
	b	Explain various uses of site investigations.	CO ₅	L2	5M
		OR			
11	a	How boring operations are carried out using rotary auger boring and	CO ₅	L2	5M
		percussion drilling?			
	b	Describe the construct of a split spoon sampler. Explain how undisturbed	CO ₅	L1	5M
		soil sample is extracted using it.			
		*** FND ***			